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Abstract. The paper presents a model of toll imposition on road networks, with the aim of recov-
ering, at least in part, the road costs. This model supposes that the amount of the toll is the result
of negotiations between the public agency, which is in charge of the network management, and
tends to maximize the toll revenues, and the local communities, who bear the negative consequences
of the toll imposition, and are compensated for the damage they sustain. A method of negotiation
management is proposed, which compels both parties to behave correctly. The model leads to a
three-level hierarchical optimization problem for which a method of solution is proposed and, by
way of example, applied to study case.
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1. Introduction

For some time now the public agencies of various countries have been studying
the advisability of levying tolls on some roads of their networks, typically the
motorways and other roads with characteristics similar to motorways, with the
aim to recoup, at least in part, the costs of road improvement, maintenance and
management. The toll imposition provokes the transfer of part of traffic from roads
on which tolls are imposed to alternative roads, which often traverse areas that are
either inhabited or particularly important from the environmental point of view, and
thus where increased traffic may have a particularly strong impact [2]. This impact
gives rise to conflicts between the public agency which is in charge of the network
management and whose financial needs call for application of the toll, and the local
communities whose territories must bear the consequences of the increased traffic
on the routes alternative to the toll roads.
One way that these conflicts could be resolved is to appraise the environmental

damage sustained by local communities and turn over a share of the toll revenues
to them as compensation. Fixing the exact amount of such compensation would be
a matter for negotiations between the public agency and the local communities, ne-
gotiations that should be conducted following rules able to ensure correct behavior
from both parties.
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This paper presents a model of negotiations, whose rules assign to the public
agency the task of defining a compensation function, which provides the monetary
value of the compensation as a function of the toll. The amount of the toll itself is
instead set by the local communities so as to maximize the profit accruing to them
from the compensation, that is, the difference between the compensation and the
monetary value that they attribute to the damage they sustain.
This model of negotiation management leads to a three-level hierarchical game:

at the upper level the public agency defines the compensation function; at the
middle level the local communities choose the toll on the basis of the established
compensation function; and at the lowest level, the network users, given the toll,
distribute themselves amongst the various routes and thereby determine the degree
of damage caused to the local communities.

2. The Model

Let us consider a road network represented by a graphG(N,L), in which N is the set
of nodes and L the set of links: some nodes are centroids of origin and destination
of transportation demand. We study the network in a time interval � during which
the transportation demand is constant, and � is long enough for traffic flow to be
considered stationary during it.
A toll is going to be levied on road A of the network, which is composed of a

subset I of the links of the graph. LetW be the set of pairs, w, of origin-destination
centroids; dw, the transportation demand between pair w during one hour of the
interval � ; �, the toll imposed per km on the links i∈ I ; li, the length in km of
link i∈L; fi, the hourly vehicular flow on link i∈L; f, the vector of the flows
fi
∀i∈L; and �, the set of vectors, f, feasible on the network.
We assume that the network capacity constraints are not active. If the network is

studied via a deterministic approach, and the costs functions ci
fi� on links i∈L
are separable, then the hourly flow vector at equilibrium on the network is the
solution to the following minimization problem:

minf∈�F1
f �=
∑

i�I

∫ fi

0
ci
x�dx+

∑
i∈I

∫ fi

0

ci
x�+� ·li�dx (2.1)

Adopting, instead, a stochastic approach, let Cw
f � be the mean of the min-
imum travel costs incurred by motorists between w∈W when the average flow
vector is f, and let ci
fi� be the mean of the costs incurred by motorists to travel
link i∈L, which is a function of the flow fi. In this case, the vector of the mean
equilibrium flows during interval � is the solution to the following minimization



THREE-LEVEL MATHEMATICAL PROGRAMMING MODEL 299

problem [4]:

minf∈�F2
f �=−∑
w∈W

Cw
f �dw+
∑
i �∈I

[
fici
fi�−

∫ fi
0 ci
x�dx

]
+

+∑
i∈I

[
fi
ci
fi�+� ·li�−

∫ fi
0 
ci
x�+� ·li�dx

]
(2.2)

Since both problems (1) and (2) have a unique solution, both implicitly define
the equilibrium hourly flow vector f as a function of � �f =f 
��.
Now let �g
f � be the monetary value that the local communities attribute to

the damage they sustain during one hour of interval � . We suppose that g(f) is a
known scalar function of equilibrium flow vector f, which can be calculated as a
result of the solution to one of the two problems (1) or (2). For example, g(f) may
be a function of the sum of the increases in travel time of a vehicle on the links
belonging to routes alternative to road A consequent to institution of the toll; since
f is function of �, even g is function of � �g=g
f 
���. � is a parameter known
to the local communities, and unknown to the public agency.
Let �
�
�� be the monetary compensation paid by the public agency to the local

communities for every hour of the interval � . It is assumed that � is a quadratic
concave function of the toll �:

�
�
��=�1�−�2�
2 (2.3)

where �1 and �2 are the components of a parameter vector � defined by the public
agency.
Given the compensation function �
�
�� the toll � is chosen by the local

communities so as to maximize the profit U accruing from the compensation,
that is, the difference between the compensation and the damage �g
f 
���, under
the constraints that neither profit nor toll are negative. Thus � is solution of the
following problem:

max�U =max���
�
��−�g
f 
���� s�t� U �0
 ��0 (2.4)

If the public agency knew the value attributed to parameter � by the local
communities, it would define the parameter vector � so as to maximize the net
toll revenues, that is, the difference between the toll revenues, R
f 
��
��=∑

i∈I fi
��·li ·� and the compensation �
�
��.
Thus the model would give rise to a three-level optimization problem [1], where

the public agency would solve the problem:

max��R
f 
�
�
���
�
�
���−�
�
�
�
���� (2.5)

where function �
��� is implicitly defined as solution of the problem (2.4) faced
by the local communities:

max���
�
��−�g
f 
���� s�t� U �0
 ��0 (2.6)
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and g
f 
��� is implicitly defined by one of two problems (2.1) or (2.2) depending,
on whether the demand is assigned to the network via a deterministic procedure or
a stochastic one.
In real networks, as we will see later, g
f 
��� is, with very good approximation,

a strictly convex quadratic function of �:

g
f 
���=y
��=a�+b�2 (2.7)

and R
f 
��� is a strictly concave quadratic function of �:

R
f 
���=S
��=c�−d�2 (2.8)

By substituting expressions (2.3) and (2.6) into problem (2.4), the latter is writ-
ten:

max�

�1−a���−
�2+b���2� (2.9)

and its solution gives raise to the following expression of the value chosen by the
public communities as a function of � and �:

�
�
��= �1−a�

2
�2+b��
if �
�
���0 
 otherwise �=0 (2.10)

On the other hand, by substituting expressions (2.3), (2.8) and (2.10) into prob-
lem (2.5), the latter is written:

max
�

[

c−�1�

�1−a�

2
�2+b��
−
d−�2�


�1−a��2

4
�2+b��2

]
(2.11)

By solving problem (2.11) the public agency would thoroughly define the com-
pensation function, while function (2.10) would furnish the toll chosen by the local
communities for a given monetary value � attributed by them to the damage they
sustain.
But the public agency does not know the value that the local communities attrib-

ute to �, and can only make a guess on it. If this guess is different from the value
chosen by the local communities, the values of parameters �1 and �2 computed by
the public agency would be different from those which would be obtained from
problem (2.11) by using the � value chosen by the local communities; correspond-
ingly different, and less, would be the net toll revenues. From expression (2.11) we
deduce that the difference is small if parameters a and b of the damage function
g
f 
��� are low, which means that the damage caused by the toll imposition is
scarce. But if a and b are high, the reduction in toll revenues consequent to a guess
on � quite different from the value attributed to it by the local communities could
be substantial.
For these reasons it is important that the public agency admits its ignorance, and

considers � as a random variable distributed around a mean #� with variance $
2
�.
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In this case the problem it has to solve is the maximization of the expectation of
the net toll revenues:

max�
∫ �2

�1

[
R
f 
�
�
���
�
�
���−�
�
�
�
���

]
f�
��d� (2.12)

where �1 and �2 are the extremes of the interval in which � is defined, and f�
��
is the probability density function of �. Thus problem (2.12) substitutes problem
(2.5) in the hierarchical optimization.
By the exam of function (2.12) we observe that, if the public agency has scarce

information about the evaluation of the damage due to toll imposition on the part
of local communities, so that there is high probability that the � value the latter
chooses is rather different from #�, it is important that the public agency attributes
high value to $ 2

�, so that the weights of the net toll revenues in function (2.12) are
rather high even in correspondence of � values quite different from #�.
We observe that the method of conducting the negotiations proposed in this

paper prevents both parties from having improper behaviors. In fact it would pen-
alize the public agency if, in calculating the compensation function, it assumed a
probability law for the damagemonetary value that did not reflect its true awareness
of the local communities estimate for this value. On the other hand the local com-
munities would be penalized if, in the computation of the toll which maximizes the
profit accruing from the compensation, they would use a damage monetary value
greater than that they really estimate: in fact, any toll value computed by solving
problem (2.4) with a � value different from the real one would lead to lower profit.
Thus we can say that the proposed method of conducting the negotiations works
as revelation mechanism [3] of the monetary value that the local communities
assign to the damage sustained.

3. A Method of Solution

As we have seen, the solution of the three-level optimization problem proposed
in Section 2 calls for the computation of functions y
��=g
f 
��� and S
��=
R
f 
���, and the solution of the maximization problem (2.12). The latter can be
obtained by numerically computing the integral in (2.12) for different vectors �, so
as to find out the vector �which maximizes the expectation of the net toll revenues
for an assigned probability law of parameter �.
The functions y
�� and S
�� can be computed by solving problem (2.1) or (2.2)

for a wide range of values of �, and calculating the corresponding values assumed
by the two functions. Calculating the regressions of these values on the correspond-
ing � leads to a polynomial approximations of the relations between each y and S,
and �.
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4. An Example of the Application of the Model

The model has been applied as a study case to the coastal road network between
Pisa and Grosseto in Tuscany, which includes a four-lane divided freeway hence-
forth referred to as road A. A long-standing debate is under way regarding the
conversion of road A into a motorway, involving substantial modernization and the
institution of a toll. The graph representing the network is made up of 356 links and
112 nodes, of which 29 are origin-destination centroids of transportation demand,
one for each township in the area.
This study case regards the levying of a toll on road A during the peak period of

the day. As a measure of the damage consequent to institution of the toll, we have
considered a quantity equal to twice the sum of the increases in travel time (with
respect to the situation in the absence of toll) of a vehicle on the links alternative
to road A in the network under examination.
In calculating the equilibrium flows in the network, it has been assumed that the

costs to motorists to move from one extremity to the other of each link of the graph
is a vector made up of two components: the monetary cost cm and the travel time
t. The monetary cost perceived on the average by motorists has been estimated at
0.15 EUROs/km, while the time has been expressed as a function of the traffic flow
f in that link, t= t
f �, assuming a different functional relation for the various
types of roads in the network.
The vector cost has been converted into a scalar quantity measured in monetary

units by multiplying the time t by a coefficient vt, which measures the monetary
value of a unit of time perceived by motorists. The costs function associated to
each link therefore takes on the expression:

c
f �=cm+vtt
f � (4.13)

In order to account for the fact that the monetary value of time as perceived by
motorists varies randomly from one individual to the next, coefficient vt has been
considered to be a random variable normally distributed around a central value, VT
= 0.05 EUROs/min, with variance $ 2=0
09·VT 2.
Calculation of the equilibrium flows has therefore been tackled via a stochastic

procedure, by solving problem (2.2). In order to calculate expressions (2.6)
and (2.7) of functions y
�� and S
��, 16 different values of �, ranging from 0 to
0.15 EURO/km, have been assigned to road A, and the values of the damage due
to toll, y (min/h), and of toll revenues, S (EURO/h), have thus been calculated for
each value of the toll, �. The expressions for functions y
�� and S
�� have been
obtained by executing a regression of the values of y and S onto the corresponding
�. They are furnished in the following, together with their respective statistics R2:

y=984�84�+354�94�2 R2=0
9999 (4.14)

S=232506�32�−1413627�44�2 R2=0
9999 (4.15)
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The values of the statistics R2 underscore the high degree of approximation with
which the regression equations reproduce the real functional relations, which are
quadratic functions, strictly convex and concave respectively, as we said before.
Thus the expression (2.10) of �
�
�� is written as follows:

�
�
��= �1−984�84�
2
�2+354�94��

if �
�
��>0
 otherwise �
�
��=0
(4.16)

Let us now suppose that the public agency assigns � a normal probability law
with mean #� and variance $

2
�=
*#��

2. Designating f�
�� as the probability
density function of �, the expected value of net toll revenues for given values of
�
#�
* is:

V 
�
#�
*�=
∫ �2

�1

�S
�
�
���−�
�
�
�
����f�
��d� (4.17)

In (4.17) the extrema, �1 and �2, of the definition interval of f�
��, needed for
numerical calculation of the integral, have been assumed to correspond to values of
0.0005 and 0.9995 of the distribution function of �, while the value of �
��� for
each � is furnished by (4.16).
By repeating the calculation of V 
�#�
*�, with given #� and *, for a wide

range of values of �1 and �2, we build the image of V, and therefore can determine
the vector �
#�
*� that maximizes V, and from (4.16) the corresponding toll
chosen by the local communities that corresponds to the specific value they have
attributed to parameter �.
The calculations have been repeated for many values of #� and *. The results

obtained have confirmed that, if the value attributed to � by the local communities
is quite different from the central value #� chosen by the public agency, the loss in
net revenues is acceptable if the latter assumes that the variance of � is large, while
the loss is very great if the variance of � is supposed to be low.
Consider for instance the case in which #�= 15 EURO/min. The compens-

ation functions computed by solving problem (2.12) with two, quite different, val-
ues of *, give rise to the following net toll revenues (EURO/h) in correspondence
of three values of � chosen by the local communities:

* �=9 �=15 �=21
0
10 4942 7998 4436 (4.18)

0
25 7228 7720 6370 (4.19)

If the public agency knew the values attributed to � by the local communities,
the compensation function computed by solving problem (2.5) would give rise to
the following net toll revenues:
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�=9 �=15 �=21
8304 8788 7837 (4.20)

The comparison of results (4.20) with the corresponding (4.18) and (4.19) puts in
evidence the losses in net toll revenues due to the fact that the public agency does
not know the value attributed to � by the local communities. These losses are still
acceptable, even if this � value is quite different from#�, in case the public agency
assumes a rather great value for *, whereas they are very high, to the point of
rendering the institution of toll uneconomical, if the value attributed to * is too
little.
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